머신러닝 17. 지도학습: 비선형 회귀(다항회귀)


    목차
    1. 데이터셋 준비
      (1) 무작위 숫자로 데이터셋 생성: runif()
      (2) 예측변수와 반응변수 관계 시각화: plot()
    2. 데이터탐색: 선형성에 대한 의심을 중심으로
      (1) 선형회귀분석 실시: stats::lm() / summary()
      (2) 회귀모델 성능(데이터 적합성) 파악: AIC() / BIC() / $adj.r.square / rcompanion::compareLM
      (3) 회귀모델 시각화
    3. 2차 다항회귀분석
      (1) 다항회귀분석: stats::lm() / summary()
      (2) 회귀모델 간 성능 비교: AIC() / BIC() / summary() / rcompanion::compareLM / anova()
      (3) 회귀분석 모델 간 시각화 비교
    4. 3차 다항회귀분석
      (1) 다항회귀분석: stats::lm() / summary()
      (2) 회귀모델 간 성능 비교: AIC() / BIC() / summary() / rcompanion::compareLM / anova()
      (3) 회귀분석 모델 간 시각화 비교
    5. 고차 다항회귀분석
      (1) 10차 다항회귀분석 후 회귀모델 간 성능 비교
      (2) 20차 다항회귀분석 후 회귀모델 간 성능 비교
    6. 다항회귀분석 예제
      (1) 다항회귀분석
      (2) 선형회귀모형과 4차 다항회귀분석 그래프
      (3) 4차 다항회귀분석으로 예측과 표준오차 구하기



024

1. 독립변수와 종속변수간 선형관계가 아닌경우의 대안

  • 곡선회귀(Curvilinear regression); 비선형회귀(Nonlinear regression)

● 예측선이 하나의 직선으로 나오지 않으므로 새로운 그래프 모양을 찾은게 비선형회귀. y = a x x^2 + b 나, 거기서도 예측선이 잔차를 품지 못하면 삼차식, 사차식의 곡선의 예측선을 만든다. 이걸 다항회귀라고 한다.

● 수학에서 x에 제곱을 씌우니까 그래프의 곡선 모양이 나오던 거에서 착안한 것. 그래서 독립변수에 제곱을 씌워서 원하는 그래프를 만드는 것.

(1) 다항(Polynominal) 회귀분석
  • 독립변수가 다항식으로 구성되는 회귀모델로 변경

  • 독립변수에 지수승을 붙여서 여러 개의 변수로 만들의 회귀모델을 구성하는 기법

  • I(x ** 2) 또는 I(x ^ 2)와 같은 형태의 수식을 사용하여 다항회귀모델을 표현함

  • 보통 4차이상의 모형은 잘 사용하지 않음

● I는 하나의 약속. 다항회귀를 만들 때 이런 수식으로 독립변수를 가공해 달라는 약속.


—————코딩——————————————————————————————————


1. 데이터셋 준비


(1) 무작위 숫자로 데이터셋 생성: runif()



(2) 예측변수와 반응변수 관계 시각화: plot()




2. 데이터탐색: 선형성에 대한 의심을 중심으로



(1) 선형회귀분석 실시: stats::lm() / summary()



(2) 회귀모델 성능(데이터 적합성) 파악: AIC() / BIC() / $adj.r.square / rcompanion::compareLM



(3) 회귀모델 시각화




3. 2차 다항회귀분석


(1) 다항회귀분석: stats::lm() / summary()



(2) 회귀모델 간 성능 비교: AIC() / BIC() / summary() / rcompanion::compareLM / anova()



(3) 회귀분석 모델 간 시각화 비교




4. 3차 다항회귀분석


(1) 다항회귀분석: stats::lm() / summary()



(2) 회귀모델 간 성능 비교: AIC() / BIC() / summary() / rcompanion::compareLM / anova()



(3) 회귀분석 모델 간 시각화 비교




5. 고차 다항회귀분석


(1) 10차 다항회귀분석 후 회귀모델 간 성능 비교



(2) 20차 다항회귀분석 후 회귀모델 간 성능 비교




6. 다항회귀분석 예제]


(1) 다항회귀분석



(2) 선형회귀모형과 4차 다항회귀분석 그래프



(3) 4차 다항회귀분석으로 예측과 표준오차 구하기




<참고 문헌="">


  1. 최점기 박사님 강의
comments powered by Disqus